Two Draggable Cats

CS 5010 Program Design Paradigms
“Bootcamp”

Lesson 3.4

@ @ @ © Mitchell Wand, 2012-2014
s 1 his work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Introduction and Learning Objectives

* |n this lesson, you will learn how to build more
complicated worlds with more than one

object.
* By the end of this lesson you should be able to

— Write more complex data definitions, representing
information in appropriate places.

— Use templates to guide the development of
programs incorporating multiple data definitions.

Requirements

Like draggable-cat, except:
We have 2 cats in the scene

Each cat can be individually selected, as in
draggable-cat

Space pauses or unpauses the entire
animation

See demo (link on next slide)

two-draggable-cats: demo

https://www.youtube.com/watch?v=XvODwv7ivrA

Note: I've added a bunch of tests since this video was made. Study them!

Information Analysis

* The world has two cats and a paused?

— it is the whole world that is paused or not

Data Definitions: World

(define-struct world (catl cat2 paused?))
55 A World is a (make-world Cat Cat Boolean)
;5 catl and cat2 are the two cats

;3 paused? describes whether or not the world
;3 1s paused

;5 template:

;3 world-fn : World -> ??

;3 (define (world-fn w)

55 (... (world-catl w)

55 (world-cat2 w)

55 (world-paused? w)))

Information Analysis

e Each cat has x-pos, y-pos, and selected?

 What about paused?
— cats aren't individually paused

— it's the whole thing that is paused or not.

Data Definitions: Cat

(define-struct cat (x-pos y-pos selected?))

;3 A Cat is a

55 (make-cat Integer Integer Boolean)

;3 Interpretation:

55 X-pos, y-pos give the position of the cat.

;3 selected? describes whether or not the cat is
;3 selected.

;5 template:

;3 cat-fn : Cat -> ??

; (define (cat-fn c)

;5 (... (cat-x-pos w)

5 (cat-y-pos w)

5 (cat-selected? w)))

Data Design Principles

* Every value of the information should be
represented by some value of the data

— otherwise, we lose immediately!

* Every value of the data should represent some
value of the information
— no meaningless or nonsensical combinations

— if each cat had a paused? field, then what does it
mean for one cat to be paused and the other not?

— Is it possible for one cat to be paused and the other
not?

Follow the template!

* |f your world has some catsin it, then your
world function will just call a cat function on

each cat.

* The structure of your program will follow the
structure of your data definitions.

e Let's watch this at work:

world-after-tick

;3 world-after-tick : World -> World

33 RETURNS: the world that should follow the
;5 given world after a tick

;35 STRATEGY: Use template for World on w

(define (world-after-tick w) (world-catl w) is a cat, so
(i'F (world-paused? w) we just call a cat function

on it
W
(make-world (///////////

(cat-after-tick (world-catl w))
(cat-after-tick (world-cat2 w))
false)))

cat-after-tick

L]
BB |
[]
B

o o
B |

L
s
L]
B |
o o
s
o o
s

o o
s

L]
B

L]
BB |

; cat-after-tick : Cat -> Cat
; RETURNS: the state of the given cat after a tick in an

unpaused world.

EXAMPLES:

: cat selected

(cat-after-tick selected-cat-at-20) = selected-cat-at-20
cat paused:
(cat-after-tick unselected-cat-at-20) = unselected-cat-at-28

; STRATEGY: Use template for Cat on c

: function definition on next slide

cat-after-tick definition

(define (cat-after-tick c)
(if (cat-selected? c)
C
(make-cat
(cat-x-pos c)
(+ (cat-y-pos c) CATSPEED)
(cat-selected? c))))

world-to-scene

* world-to-scene follows the same pattern: the
world consists of two cats, so we call two cat
functions.

* Both cats have to appear in the same scene,
so we will have to be a little clever about our
cat function.

world-to-scene

;5 world-to-scene : World -> Scene

55 RETURNS: a Scene that portrays the

H given world.

55 STRATEGY: Use template for World on w
(define (world-to-scene w)

(place-cat
< The pieces are cats, so
(wor'ld-catl W) create a wishlist
(place -cat function to place a cat
(world-cat2 w) R

EMPTY-CANVAS)))

place-cat

;5 place-cat : Cat Scene -> Scene
;5 returns a scene like the given one, but with
;5 the given cat painted on it.
55 strategy : Use template for Cat on c
(define (place-cat c s)
(place-image

CAT-IMAGE

(cat-x-pos c¢) (cat-y-pos c)

s))

Summary

* |n this lesson, you had the opportunity to
— Build a more complex world

— Write more complex data definitions, representing
information in appropriate places.

— Use structural decomposition to guide the
development of programs incorporating multiple
data definitions.

Next Steps

* Run two-draggable-cats.rkt and study the
code (including the tests!)

* |f you have questions about this lesson, ask
them on the Discussion Board

